4. Redes Convolucionales

Abril 2024

D Inthooucator

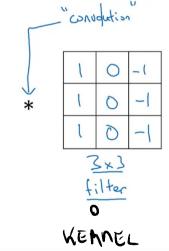
- Objetivos: ciasipica cruh or imagenes, dehocron de objetos, nometennos de estilos combinar dos estilos.
- HETOU CHON OBJERD PURCHE GEN MY GRANGE.
- ma symptetis consiste en ansiderar un simple:

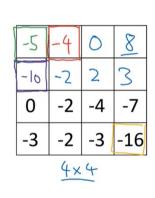
O convousion es

Vertical edge detection

3x1+1x1+2x1+0x0+5x0+7x0+1x-1+8x-1+2x-1=-5

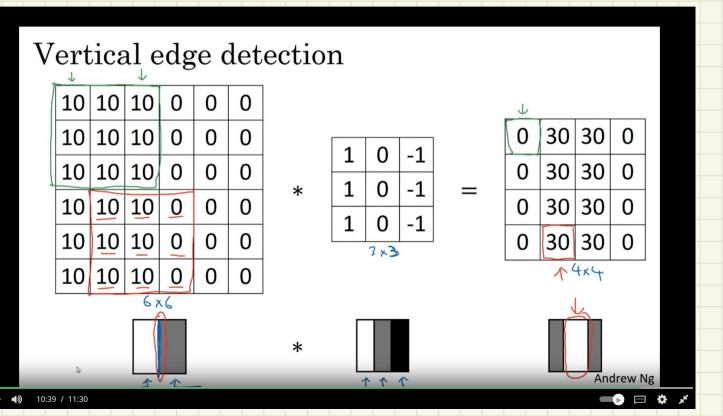
3	0	1	2	\bigcirc	4	
1	5	8	9	3	1	
2	7	2	5	(1)	3	
0	1	3	1	7	8	
4	2	1	6	2	8	
2	4	5	2	3	9	
	6×6					





Andrew Ng

- STE FICTHO ON PMMTI WINT A DETECTAN COORS'
VENTICALES:



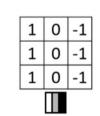
- DIFERMOIN DE PARM DE GNIS A BUMO - BUMO A GNIS

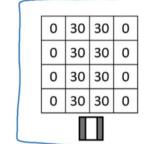
Vertical edge detection examples

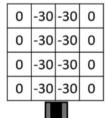
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
	->	> [

0	0	0	10	10	10	
0	0	0	10	10	10	
0	0	0	10	10	10	
0	0	0	10	10	10	
0	0	0	10	10	10	
0	0	0	10	10	10	

	1	0	-1
*	1	0	-1
	1	0	-1

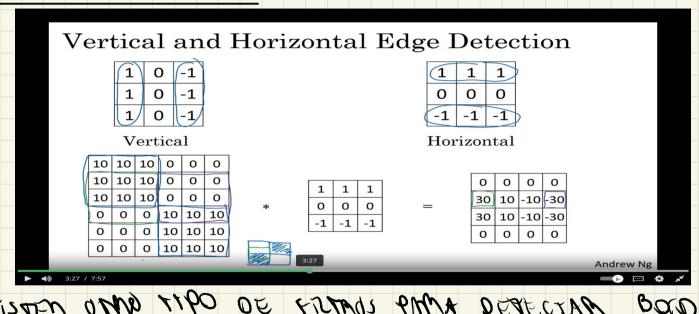






Andrew Ng

CHOS WR COMPCEZOS



- EXISTEN OTHER TYPO DE FILMUS PANA DETECTAR BOLDES

- CA APROXIMATOR DE DC ES APRONDEM BOLDES

- CA APROXIMATOR DE DC ES APRONDAM IXODES

& N; 00A9 - VANTO FILMOS PUEDON REDUCIÓ EL TAMANO DE LA IMAGEN 25000 an mormann en us voides >> 6499WA = 6=1 - 80CV CION: 00000000 91 000000000

- vivio mo same annumions

Valid and Same convolutions

"Valid":
$$n \times n \quad \times \quad \xi \times f \quad \longrightarrow \quad \underbrace{n - f + 1}_{f \times h} \times h - f + 1$$

$$6 \times 6 \quad \times \quad 3 \times 3 \quad \longrightarrow \quad 4 \times 4$$

"Same": Pad so that output size is the <u>same</u> as the input size.

$$N + 2p - f + 1 = p \Rightarrow p = \frac{f - 1}{2}$$

Andrew Ng

STHIDED CONWWTIONS

Strided convolution

-		X	2				
0	2	3	7	4	6	2	9
	6	6	9	8	7	4	3
	3 3	4 4	8 4	3	8	9	7
	7 1	8 0	3 ²	6	6	3	4
	4 -1	2 0	1 ³	8	3	4	6
	3	2	4	1	9	8	3
	0	1	3	9	2	1	4
	7.2						

		_	_	ı
L	x7			

	3	4	4
*	1	0	2
	-1	0	3
		3×3	

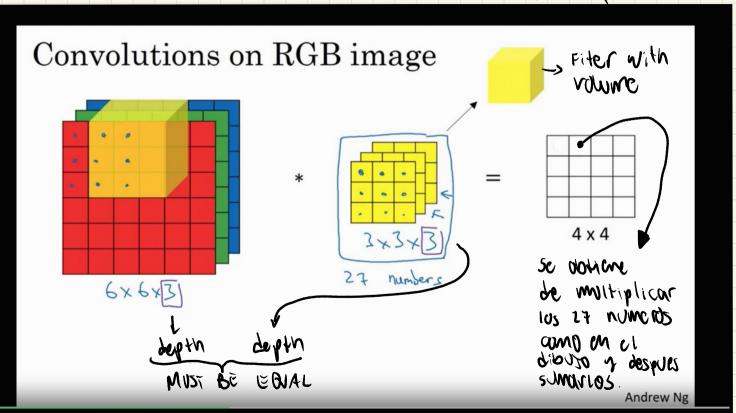
91	100	83

Summary of convolutions

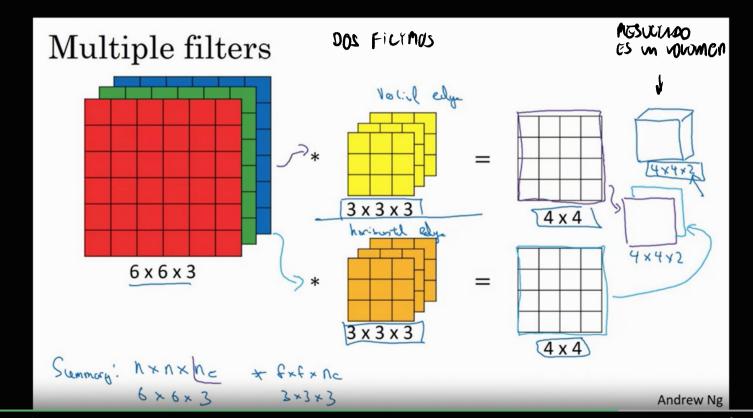
$$n \times n \text{ image}$$
 $f \times f \text{ filter}$ padding p stride s

$$\left\lfloor \frac{n+2p-f}{s} + 1 \right\rfloor \times \left\lfloor \frac{n+2p-f}{s} + 1 \right\rfloor$$

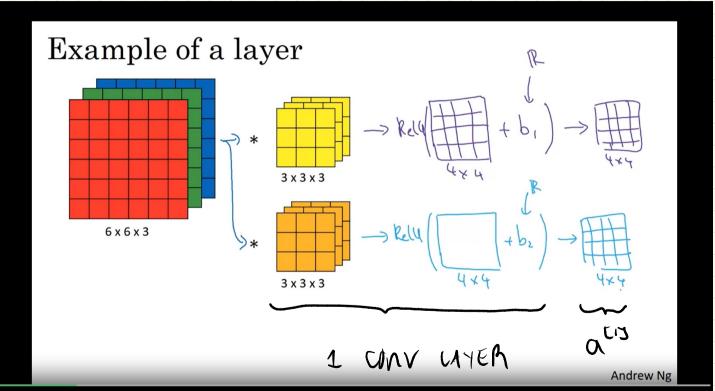
- EN MATERNATION ESTA OPEMACION ES MAS PRECISAMENTO CAMADA OMMERCIÓN CAMADA, OTITETO SINGUARISTO ES MISCOLADO a consolican de envocas con micriples curaces



5) consum am withples filtros

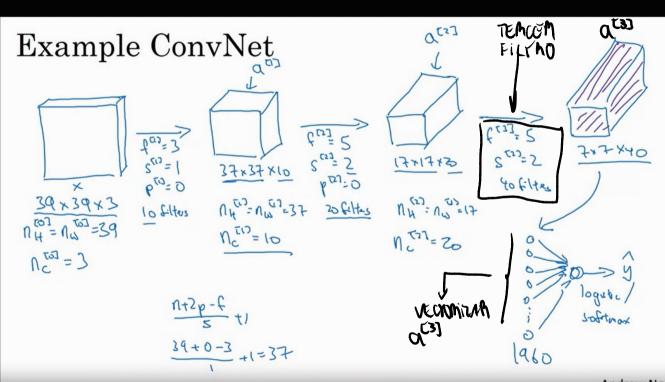


JAMONOWAMO AMO AM MONOWAMONAL

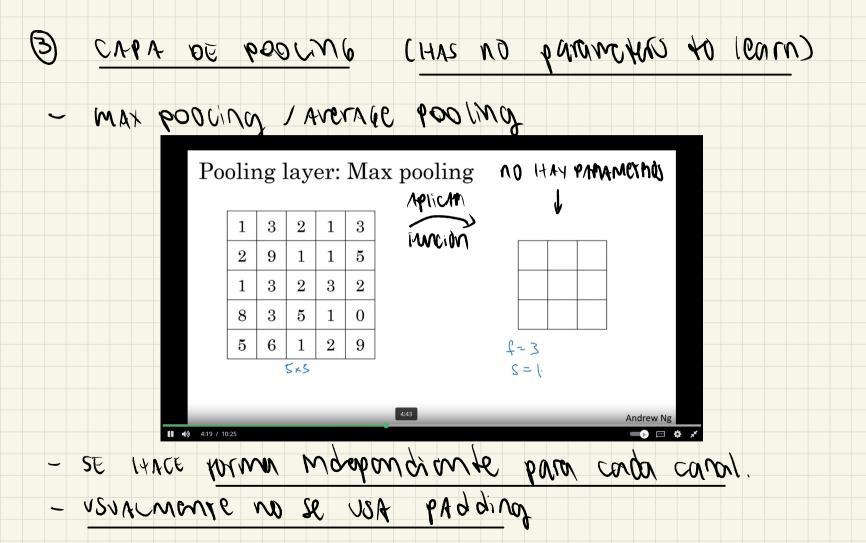


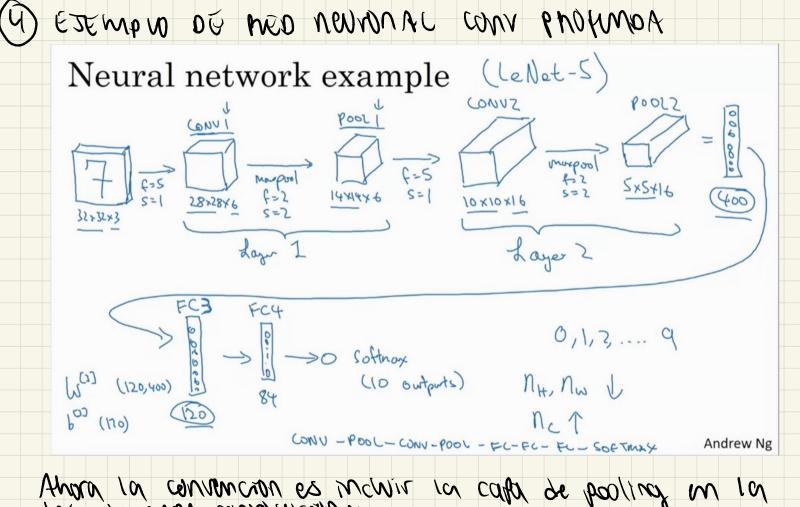
- observese que el número de ponúmernos de una compor no depende del temaño de la omagen. Solo de el numero so repass of + ordibundal to arow untillo as totally se son townto wome MITHUS existen.

@ EZEMBNO DE MED VENDUYC COUR BLOKMON (6) LY



Andrew Ng





get ge capa anyonally ac

Neural network example

	Activation shape	Activation Size	# parameters
Input:	(32,32,3)	_ 3,072 a ^{rol}	0
CONV1 (f=5, s=1)	(28,28,6)	4,704	456 <
POOL1	(14,14,6)	1,176	0 ←
CONV2 (f=5, s=1)	(10,10,16)	1,600	2,416←
POOL2	(5,5,16)	400	0 ←
FC3	(120,1)	120	48,120 7
FC4	(84,1)	84	10,164
Softmax	(10,1)	10	850

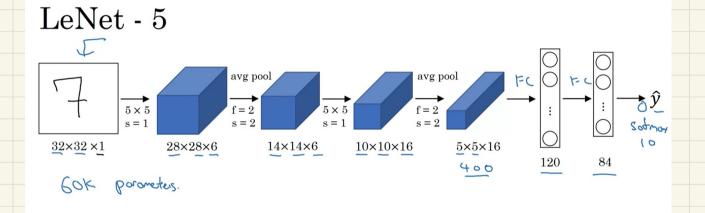
¿ por one mos comonomies? - 6 HWAM CLUDS ON WOULDOS - SPANSITY OF ancitions: EN CADA CORPU SOW POCOS which sidding

CUASICAS

- Lenct 5 - Alex Het
- VC6

- his net
- norpon -

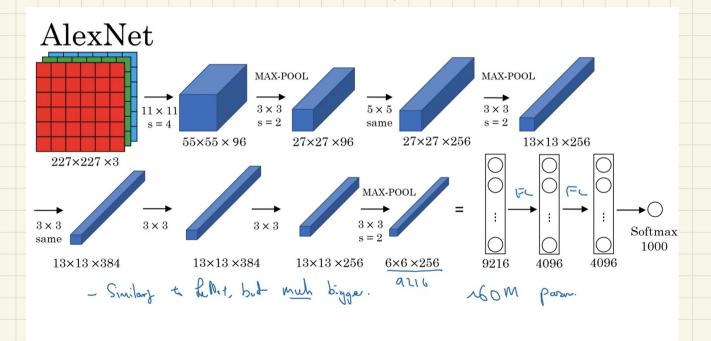
- Itotoricamente un podomma: clasificación de digita.



Ardrew Ng

Alex Het: Uriznevsky 2012: Image net classification with deep conv. Neumi retubird.

- Similar a Le Het-5 pero con 60 millones de gominethas. - Este Atiliado és er punto de saprexión en CV usando DC

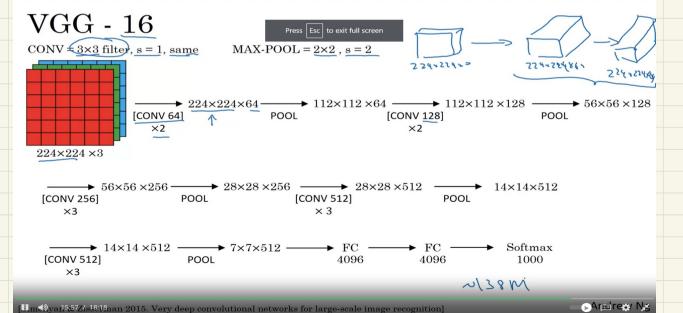


[Krizhevsky et al., 2012. ImageNet classification with deep convolutional neural networks]

Andrew Ng

- 16: Simonyan & zisserman. 2015. Very deep conv. HH

For large scale Image recognition - simplifica las anterrores movintecturas es mas nombrenea PERO MULTA UMOE: 138 millones de ponómentos 16 CMMS CON PCSW



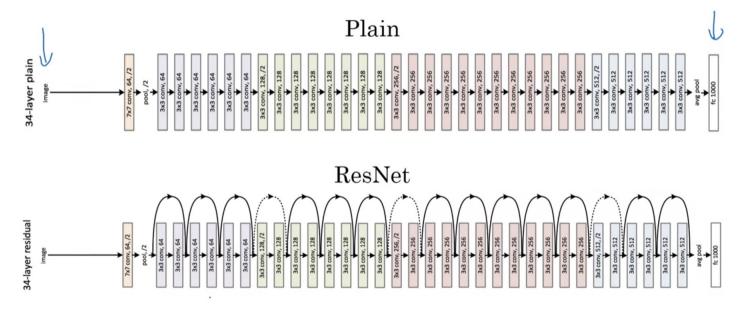
HESMET He 2015. Deep residual retworks for IMAGE NEWGNITION - PERMITE ENTREMM MEDES MUP (INTROPS)
- US A M SHORT WIT O SWIP CURRECTION
- MITICA EL PODOLOMO DE DINGHONES - O O DOS CAMAS DE UMA NED rinear held the their their their CAPA 1 CMPA 2

2 CIII) CLIL held this her curs linear rinear SHOMT WT (MES, DUAL BLOCK) C(42) =

- 14AY ONE LEVEL WIDADO CON 1AS D'MOMS, ORES PANA QUE

O(CL+X) = g(ZCL+X) + QCL) > HAGA SENTIDO

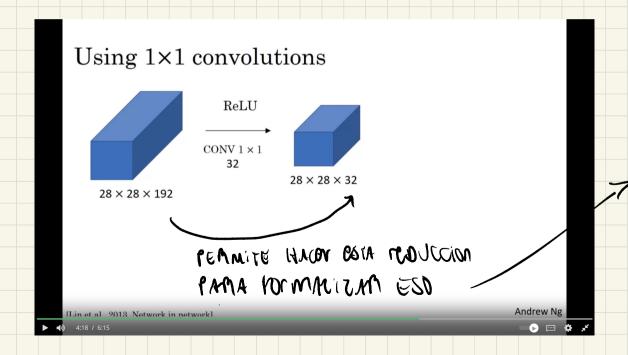
ResNet

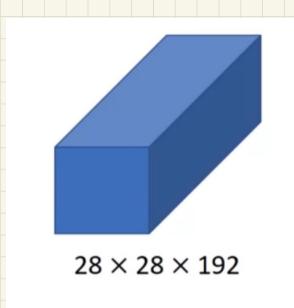


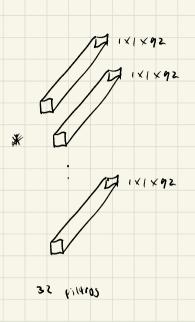
▶Ardrew Ng

1x1 convolucions

- leymite continuen & extendit of norman
- ESTO B WELEVANTE EN DICEPTION MET





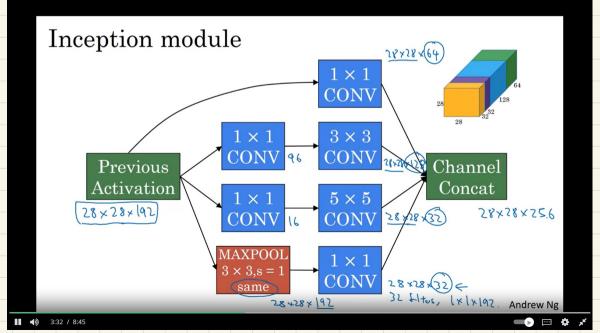


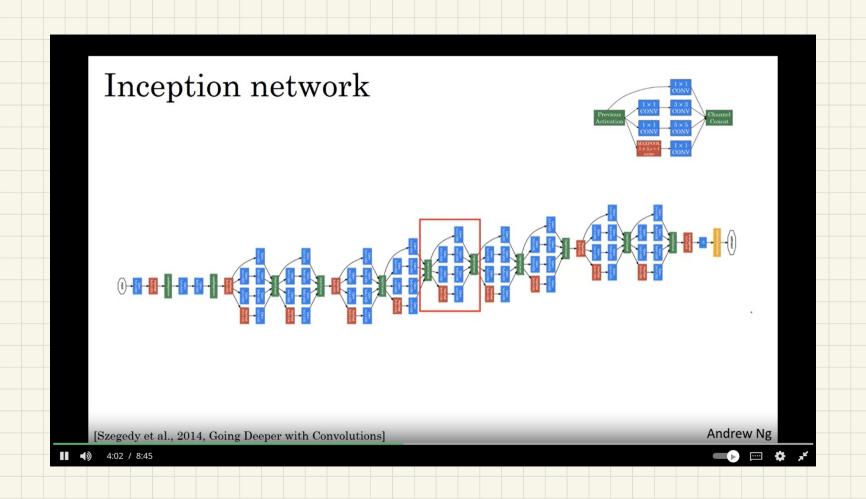
 $28 \times 28 \times 32$

OBSORVACION: ON GENCIAI NO SIEMPRE SE VOI ROPORTAR EI VOIUMON DE OU PITMUS POCOFE FIRMA QUE SON ISVAI AI WINNEM DEI ENPIT. en aesumen - LAS CAPAS DE POOITROJ SE PUEDAN USAI PORA ABRONDAT O rEDUCIT - roz 6:402 1x1 bollor unspikicar el nophinon

INCOPTION HOTWORK: Szesedy et al 2014 Going Leepor

- NO es necresario decrior el tamaño de las filtras o caras de poocinó se ponon todas.





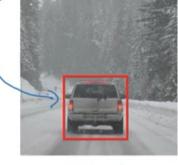
- Mobile not ES WA MOVITECTUR ONE PUEDE DESPLEGARGE CON POCA CHAVIONO DE CONDUMO ESTA BASADA EN MA FORMA MOS EXICIENTE de MACOR ab us champes moutones so eupos O "DOPYMUJE" CONVOLMHON 3 "HOWITHING" CONVOYMIN - Ethicimy Met ES MA MONITOTULA QUE PORMITE ELEGIA HADRITECTULA DE MONAS A MAS recursos computadomos.

TAMEN: CLASIFICACION, LOCACIZACION, DCHECCION

What are localization and detection?

" Car"

Classification with localization



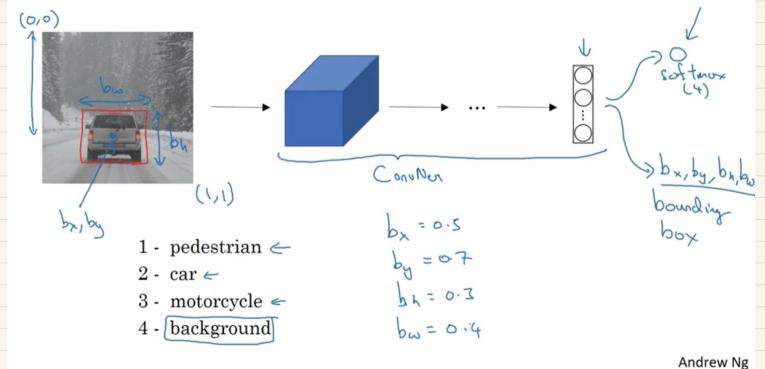
"Cw

object

Detection

multiple objects TAMEA: CLASIFICACION, LOCACIZACION

Classification with localization



TAMEA: CLASIFICACION, LOCACIZACION

Defining the target label y

Need to output
$$b_x, b_y, b_h, b_w$$
, class label (1-4)

1 - pedestrian
2 - car \leq
3 - motorcycle
4 - background \leq

$$\chi = \begin{cases} (\hat{y}, y) = \\ (\hat{y}, y)^2 + (\hat{y}_2 - y_2)^2 \\ + \dots + (\hat{y}_k - y_k)^2 & \text{if } y_i = 1 \\ (\hat{y}, y)^2 & \text{if } y_i = 0 \end{cases}$$

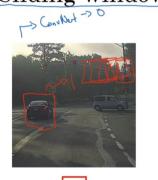
$$\chi = \begin{cases} (\hat{y}, y) = \\ (\hat{y}, y) = \\ (\hat{y}, y)^2 & \text{if } y_i = 1 \\ (\hat{y}, y)^2 & \text{if } y_i = 0 \end{cases}$$
Andrew Ng

TAMEA DE MECCIÓN

- ENTROMAR ON MOUTITMO DE CLASIFICACION

- USAM SCIDMG WINDOW DEVECTION RUEDE US IMPLEMENTATION DE FORMA SIMULTATIONS US PREDICCURES SE 144 CEM DE FORMA SIMULTATIONAL

Sliding windows detection



...Ar⊟re⊯ Γ

TAMEA: BOUNDMG BOX PAROTICTIONS

TAPIER : EVALUACION DE QUE TAN BOORD ES UN WEAUGHOTO DE UN UBJECTON SOUR UNION

Evaluating object localization

More generally, IoU is a measure of the overlap between two bounding boxes.

Andrew Ng

- M Problemme an ins transcris where ESE PMTO

ES are se octreth vimins veres in abjects.

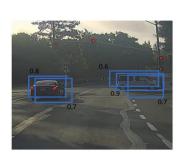
- Mon max expression: consisten:

1 Descartar todas las castes an prob. bata & o. 6

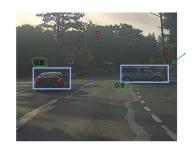
2 Elevir in one tempor prob. altor

3 Descartar todas we ge tempon to 120.5

Non-max suppression example



Non-max suppression example



Pc

Andrew Ng

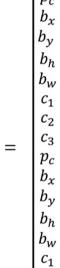
■ **4** 2:03 / 8

11 4) 3:40 / 8:0

TAMEA: DETECTION DE MUITIPLES OBJETOS

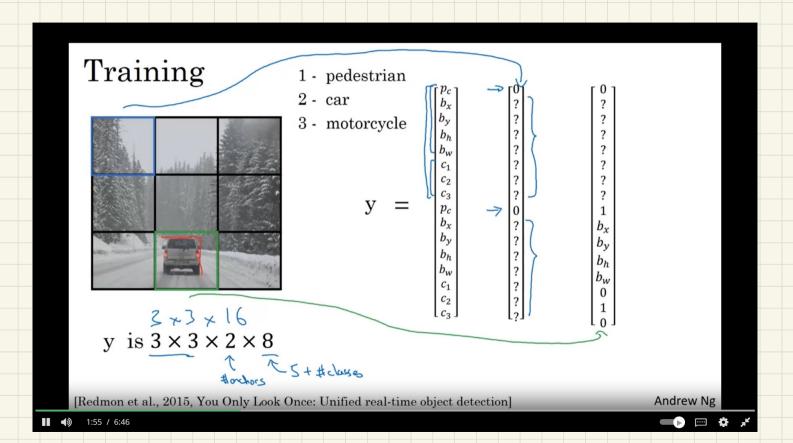
Anchor box example

Anchor box 1: Anchor box 2:



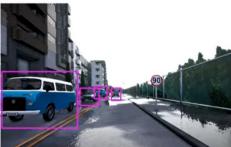
Andrew Ng

YOUD ALCOMITHM POPE TOD FEDRIUS EM IN MODRITMO

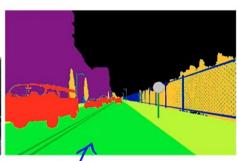


Object Detection vs. Semantic Segmentation

Input image

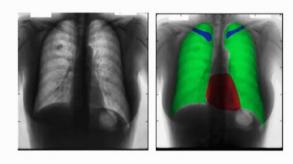


Object Detection



Semantic Segmentation

Motivation for U-Net



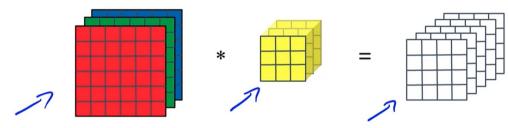
Chest X-Ray



Brain MRI

Transpose Convolution

Normal Convolution

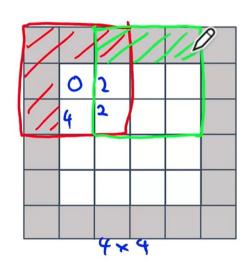


Transpose Convolution

Transpose Convolution

				L	1	2	1	
					2 1	0 1	1 1	
1			ı	ſ	0 1	2 1	1	
	2	1						 →
	3	2						
	2+	2						

filter fxf = 3x3 padding p=1



stride s= ?

Andrew Ng

Transpose Convolution

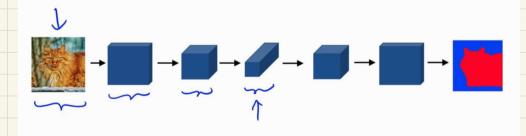
						1	2	1	
						2 1	0 1	1	
			r			0 1	2	1	
	2	1			_		10-00		 →
	3	2							
7+2									

//	//	1	0	1/1	
//	0	2+2		1	
//	4	2+0	2	(
		4 ×	4		

V - Met

- ESTA MODITECTURA SE APARMOA EN THANSPOSE
CONSOUTION PARA MESOLVER ET PROBUEMA DE
SEGNATACIÓN SCUMNATICA

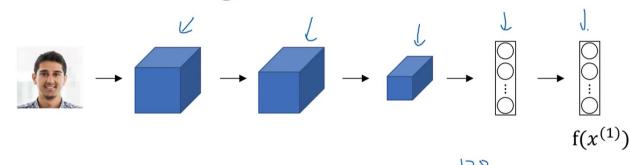
Deep Learning for Semantic Segmentation



meconocimiento de camas: vehiticación is reconocimiento - one-snot learning: con un soil exemple recorded si un parsonal esix un usta - Estatecia spronder neu fonction de similaridad: écing 1, imaj 2) Face verification vs. face recognition → Verification 1:1 Input image, name/ID · Output whether the input image is that of the claimed person → Recognition 1:1 • Has a database of K persons

- Get an input image
- Output ID if the image is any of the K persons (or "not recognized")

Goal of learning



Parameters of NN define an encoding $f(x^{(i)})$

Learn parameters so that:

If $x^{(i)}$, $x^{(j)}$ are the same person, $\|f(x^{(i)}) - f(x^{(j)})\|^2$ is small.

If $x^{(i)}$, $x^{(j)}$ are different persons, $\|f(x^{(i)}) - f(x^{(j)})\|^2$ is large.

- thrown obstive: miller was function - ws dates se organizan en tripletes: LA, P, H) ~ Hegative positive (diferent) HAY ON KNOW WIGHED GOLDE si se mure aleamorio en feicil Anchor (same) minimizer la perdida. ~ 4 (A, P, H) = max / 11fcA) - FCP)112 - 11fcA) - FCH)112 + d, 0) n-magna ge simmse manitechine 3 = 2 y (Aii) , P (i) , M (i)) un var enmensien in reg es prese van an exemples incres (one shat recurring)

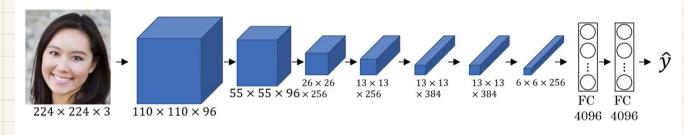
como in brooknow de criedhestras estudous:

Learning the similar Esc to exit full screen ction $\chi(j)$ $\dot{d} = Q \left(\sum_{i,s} V_i \left[\frac{1}{f(x_{(i)})^k} - f(x_{(i)})^k \right] + \rho \right)$

¿ Ove HACE MA CONV HM?

Visvalizmoo One HACE MA CONVHH: Visualizing and malestanding convHH 2013.

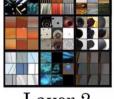
Visualizing what a deep network is learning



Pick a unit in layer 1. Find the nine image patches that maximize the unit's activation.

Repeat for other units.

Visualizing deep layers: Layer 3



Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Neural style transfer cost function

Content C

Style S

Generated image $G \leftarrow$

[Gatys et al., 2015. A neural algorithm of artistic style. Images on slide generated by Justin Johnson] Andrew Ng

Find the generated image G

1. Initiate G randomly

$$\underline{G}$$
: $\underline{100} \times \underline{100} \times \underline{3}$

2. Use gradient descent to minimize J(G)

$$G := G - \frac{\lambda}{\lambda G} J(G)$$

[Gatys et al., 2015. A neural algorithm of artistic style]

Andrew Ng

FUNCTONES DE COSTO: contenido - J content (C.6) se depire correasondo la representación de c à e m ru cabu v 96 va red preentrenada (e.g., vco) - Si las (majres de activación són: 2 convent (((0) = 7 11 00 - 00 00 11 5

FUNCTIONED DE COSTO: ESTILO

- Primary definitions la correlation entre conques:

(6 KM) = \(\text{T} \) \(\text{T} \) \(\text{Cat} \) (6)

one ocurren en apperentes person de la imagen

Intuition about style of an image

Style image

Generated Image

- FUNCTOR DE COSTOS DE ESTICO EM CAPA L: - FUNCAM DE COSTOS DE MUXIPUES CAPAS; Jserie (5,6) = 5 % E13 TEN (5,6) 2 Myorpanáncy NOS